"In 1944, a bombing raid almost completely destroyed an enormous Padua church fresco that dated back to the Renaissance and had once been admired by Goethe. Some 88,000 tiny pieces of plaster were rescued from the rubble, and a mathematician has managed to piece some of the masterpiece back together."Link to the original article.
I recommend going to the original article to properly understand what this clever mathematician has done. If I try to summarise I expect that my chances of accurate description are relatively small, given that I will be summarising a news story that is already a summary of the actual algorithm used by the mathematician.
It's a rare example of the overlapping of art, history and mathematics. The application won't have a profound impact on any of the disciplines, but it is interesting nonetheless.
Of course if the art historians had just given me all the pieces 13 or so years ago I'm sure I could have put them all together on one of the many afternoons I spent in the summer holidays watching cricket and piecing together progressively more complicated jigsaw puzzles. But, I'm sure they had their reasons to wait.
[With apologies to Shaun for editing this post, here are a couple of mathematical explanations of this research, beginning with a summary. -MM]
Massimo Fornasier, "Mathematics enters the picture." Mathematics and Statistics, 2009, Volume 3, 217-228.
Massimo Fornasier, "Faithful Recovery of Vector Valued Functions from Incomplete Data: Recolorization and Art Restoration," Scale Space and Variational Methods in Computer Vision: Lecture Notes in Computer Science, 2007, Volume 4485/2007, 116-127.
Massimo Fornasier, Domenico Toniolo, "Fast, robust and efficient 2D pattern recognition for re-assembling fragmented images." Pattern Recognition, Volume 38, Issue 11, November 2005, 2074-2087.
Follow @just_shaun