Thursday, April 4, 2013

The universe as seen by Planck - Day Three (two rumours)

The conference dinner here is about to start (has already started), so I don't have time for a proper post. However, there were some very interesting rumours/revelations today so I'll write them down super-quickly. In increasing order of potential interest (note this post might be a bit technical, I'll explain all of this before the end of the weekend):

The feature at l=1700

A senior Planck figure gave a talk today on the features in the Planck angular power spectrum. Much of his talk was devoted to the apparent feature at \(l\simeq 1700\). In the 15 months worth of data that Planck has used to generate the cosmological results shown in their released papers, the statistical significance of this feature (when any feature is looked for) was \(\sim 3\sigma\). This was with a look elsewhere effect that took into account the possibility of the feature occurring at another \(l\) value.

What he let slip was that, when they analyse this same feature with the full temperature data set, the significance of the feature drops to \(\sim 2\sigma\).

Of course, not too much should be read into this because the additional data isn't quite as well understood as that first 15 months; however, its the same telescope looking at the same sky and foregrounds, so there shouldn't be too many complications. Note that this feature is out of the resolution range of Planck's polarisation capabilities, so the new temperature data is the only additional data we will get in the next data release.

Planck's data analysed on the SPT sky

One of the curiosities of the Planck release was that it seems to give cosmological results that are slightly discrepant with what the South Pole Telescope was giving. If Planck disagrees with BAO or supernovae, or galaxy clusters this is all interesting, but potentially the result of Planck and/or one of those other analyses getting it wrong. However, SPT is another CMB experiment, the fact that Planck and SPT are a bit discrepant is very confusing.

Perhaps SPT made a mistake and the CMB they measured is not the correct CMB?

The obvious way to test this is to analyse the Planck data on the same part of the sky that SPT measured. I overheard a conversation between lead figures in Planck, WMAP and SPT and it seems this is exactly what SPT have done (in unpublished work).

The result is striking.

They found a cosmology that agrees with SPT.

If true, this means that it isn't just Planck and SPT that are slightly discrepant, but different regions of Planck's sky.

What this means cosmologically is unsure. I'll speculate a bit tomorrow.

Power asymmetry

There was quite a bit of excitement over a plot that showed power asymmetry in different directions of the sky. I was going to write about it, but upon reflection, the excitement seems confusing. I'll try to explain the excitement and background before the end of the week.

[The final summary is now available here]

Wednesday, April 3, 2013

The universe as seen by Planck - Day Two

The cosmic microwave background (CMB) is the best probe we've yet found to study the early universe. The CMB's temperature is very nearly uniform. However this temperature does have very small anisotropies that can be used to study sound waves that existed in the primordial universe. The Planck satellite (an ESA funded experiment) has mapped these temperature anisotropies over the entire sky with the best resolution to date. Last month, Planck released its data and it immediately became the new benchmark for the testing of cosmological models and the measurement of cosmological parameters.

This week ESA is hosting the first conference since Planck released its data. The conference is at ESTEC in the Dutch town of Noordwijk. I am attending this conference and will be doing my best to write updates about what was discussed during the week.You can read my introductory post where I give my motivation for doing this, here.

The CMB is not just useful for studying the primordial universe. As soon as the CMB forms, everywhere in the universe, it travels freely, in every direction, at the speed of light. This means that, in every direction, the CMB we measure here on Earth today has travelled to us from a point billions of light years away. In principle, this makes the CMB not just a really good probe of the state of the universe where and when it was emitted, but also of everything it passed on its way to us.

This secondary use for the CMB turns out to be very useful and many of the highlights from Planck relate to the way in which the CMB interacts on its way to us. The existence of matter in the universe affects the CMB gravitationally. This causes the CMB to bend towards regions of over-density and away from regions of under-density. It also causes the CMB's temperature to shift as it falls into and out of over and under-dense regions. This first effect is known as lensing and one of Planck's most impressive results is a map of the locations of matter in the universe through this lensing effect. The second effect is known as the Sachs-Wolfe effect, something I've written about in some detail.

There is a third way that the CMB is significantly affected by the intervening universe. Within clusters of galaxies there is a lot of hot gas. If the CMB passes through a cluster it can scatter off electrons in this hot gas. The effect of this scattering on the CMB is known as the Sunyaev-Zeldovich (SZ) effect. Therefore, we should be able to use the CMB to detect the lines of sight along which the most massive clusters lie.

We can. And Planck has.

Tuesday, April 2, 2013

The universe as seen by Planck - Day one

 I am currently attending the ESA run conference "The Universe as seen by Planck". I will be trying to write a summary each day of what I found interesting. To read about my motivation for this, please read yesterday's post. Below is the summary of the first day's talks. I apologise if the posts this week are overly technical. I don't have much time for writing these and this is the best I can do given the constraints. As always, if you don't understand, just ask questions in the comments.

Overall summary

Today was mostly about introducing the Planck experiment and its data. This is the first conference ESA has held since the data was released and in fact the first conference about Planck open to non-Planck scientists like myself at all. Therefore today was actually the first chance for the Planck collaboration to be honest about what their telescope has and has not been able to do. As a result, many of the talks that can lead to the most speculation will not come until tomorrow and Thursday. Still, there were some interesting things to come out of today. For example:

  • The reasons why no polarisation data from the CMB were used in likelihood analyses this time
  • (Not mentioned in a talk, but overheard from reliable sources) The reason no constraints on "\(g_\mathrm{NL}\)" were released this time
  • The existence of two "features" in the temperature power spectrum and many "features" in the temperature bispectrum
  • A few other curiosities

Here are, in no particular order, the things I found interesting today...

The missing data feature

People who watched the data release conference in March might have been a bit startled by the set of CMB maps that looked like the one below. I was. The particularly startling thing about these maps is the band slightly greyer in colour that persists right in the middle of the image and in the bottom left. The rest of the map looks quite similar to a typical map of the microwave radiation measured on the sky.

Monday, April 1, 2013

The universe as seen by Planck (conference)

The 47th ESLAB symposium. All the cool kids will either be there, or watching it live on the webcast. Are you one of the cool kids?

This week I will be at a scientific conference, organised by ESA. In ESA's words, this conference is "An international conference dedicated to an in-depth look at the initial scientific results from the Planck mission". The conference is taking place in the small Dutch down of Noordwijk. At this conference there will be many people from within the Planck collaboration, who I'm sure will be delighted to finally be able to talk about their work and many people like myself who have spent the last few years eagerly anticipating the Planck collaboration's results.

The conference will have a live webcast here, you should watch some of it.

I will also be blogging during the conference. My goal is to try to write a new post here each day summarising the most interesting talks and discussions from the conference that day.

Why am I doing this?

An absolutely wonderful image showing how the various all sky images of the CMB anisotropies have improved each decade.


This won't be an easy task. The conference goes quite late each day and many topics will be covered, but I want to do this anyway. To understand why, first go watch my new favourite video on the internet. Brady Haran makes science videos and if you've never seen them, you should go check them out. I felt like Brady was taking the words out of my mind when I saw that video. One day the utopia that Brady and I envisage will exist and a Planck conference like this will be besieged by legions of fans. One auditorium will be fill of fans of non-Gaussianity and fans of Gaussianity, on opposite side, cheering their preference on. Another auditorium will be filled with fans of dark radiation, cheering their team on. Yet another will be filled with fans of the cosmological constant shouting their favourite chants at their mortal enemies, the quintessence crowd. But that day is not today.

Sunday, March 24, 2013

Planck: All we need is six numbers to describe the universe

As I'm sure most of the readers of this blog are aware, the Planck data is now out. It turns out I was correct with two out of three of my rumours. I said that the "ISW mystery" was still present, it was. I said that Planck would present ~3\(\sigma\) evidence for non-zero neutrino masses, they did (though, as I suggested in my rumour, only after including information from galaxy clusters Planck has detected). Finally, I said that there would be 2-3\(\sigma\) evidence for some type of "non-Gaussianity", there wasn't. I will duly update my should-I-trust-that-rumour? algorithm in the following way: explicit remarks from Planck members, good rumour; wishful thinking from other theorists, bad rumour.

So what were those results? What big news is there?

The answer is that there isn't anything strikingly new or surprising. I've been trained by years as a theoretical physicist to to dread that sentence and, indeed, many of my colleagues have gone into various states of despair. But, for some reason, I spent the second half of last week in a state of excited wonder. Surprisingly, I loved what I saw on Thursday. It was both stunning and beautiful. This post will be me trying to explain why. (For more details of the actual results see Sesh's post and Peter Woit's list of other blog posts).

The model of cosmology that has been gaining traction over the last decade and a bit is called \(\Lambda\)CDM. This stands for \(\Lambda\) Cold Dark Matter, where the \(\Lambda\) represents the poorly named "dark energy". This model has a few theoretical issues, but it is incredibly simple. What Planck specifically found is that this model fits the CMB (Cosmic Microwave Background) very well and better than any alternative that they tested.

Why I found what Planck saw to be incredible

As I wrote above, Planck's results last Thursday had me in a state of impressed awe. On the day, I couldn't quite put my finger on why, until I read another cosmologist's tweets marvelling at how everything we were seeing could be described by just six parameters. Then it hit me. For once, cosmology had gotten it right. What Planck measured depends on a significant variety of physical phenomena. If the early universe had more matter, or more radiation than we expected, Planck would have seen it. If the primordial density perturbations had been shaped in a significantly different way to that in which we expected, Planck would have seen it.

Cosmology gets a lot of flak from some directions for the so-called "epicycles" of dark matter and dark energy. I can kind of understand this when people see images like this and are told that we "don't understand" 95% of the energy density of the universe. But what is often missed is that we include the effects of dark matter and dark energy in this \(\Lambda\)CDM model with one, single, parameter each. And once those parameters are fixed, the predictions of all of cosmology are too.

With this firmly in mind, take a look at Planck's most important, headline image below. This (sort of) shows the amplitude of the temperature fluctuations in the CMB as a function of their angular scale. Remember, it takes just six numbers to define what that entire curve should look like. Just six.

Thursday, March 21, 2013

Following Planck's results today

For the people (new and old) who follow this blog and are interested in the Planck satellite's results, which are being announced today, here is a run-down of important things to know:

  • Richard Easther will be live-blogging the data release at this location. If you can't watch the release yourself you should follow Richard's post.
  • The first ESA event is a general-audience press conference, very soon, at 10:00 CET, which you can watch here.
  • The second ESA event is a press conference aimed at scientists and science journalists, which will stream at the same location, i.e. here. You should watch that even if you aren't a scientist because it will be when all the interesting bits are revealed. If you're confused, you can follow Richard's live-blogging and/or ask questions of scientists on Twitter with the hashtag #askplanck.
  • The release of the scientific papers is scheduled for 12:00 CET at the ESA website (I'm not sure of the precise url, maybe here?).

Although I won't be live-blogging the results, I will write a post later today summarising what we've learned and discussing the fall-out arising from all the new information.

Enjoy the day!

Edit: The papers will appear here at 12:00 CET: http://www.sciops.esa.int/index.php?project=planck&page=Planck_Legacy_Archive

Twitter: @just_shaun

Tuesday, March 19, 2013

Planck rumours will soon become Planck results

On Thursday, the Planck satellite will be revealing its first cosmological results. In terms of fundamental physics, this will be the biggest event since the Higgs discovery last year. In the cosmology community it is the biggest event for the best part of a decade (possibly in both directions of time). If you don't follow cosmology too closely, you might wonder why this particular experiment might generate so much excitement. After all, aren't there all sorts of experiments, all of the time?

If so, I hope you've come to the right place.

The sky as seen by Planck in 2010. Only, they hadn't removed the foregrounds yet. There's a whole Milky Way galaxy in the way. Why must they make us wait so long?

If you're unaware, Planck is a satellite put in space by the European Space Agency to measure the cosmic microwave background (CMB). The CMB is an incredibly useful source of cosmological information. The impending release of Planck's results on Thursday is big news because Planck has measured the CMB with better resolution than any other experiment that can see the whole sky. Planck might have discovered evidence of interesting new physics, such as extra neutrinos or additional types of dark matter. It might even reveal some effects relating to how physics works at energies we could never probe on Earth. But even if it hasn't discovered anything dramatically new, the precision with which Planck has measured the parameters of the standard cosmological model will immediately make it the new benchmark.

There have been surprisingly few rumours leaked to the rest of the cosmology community about what to expect on Thursday. This has resulted in the most pervasive rumour being that they have simply not found anything worth leaking. Whatever the reality, on Thursday rumours will become results.

What has Planck actually done that is so interesting?